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Phase in quantum optics 

S M Barnett and D T Peggi 
Optics Section, Blackett Laboratory, Imperial College of Science and Technology, London 
SW7 ZBZ, UK 

Received 6 March 1986 

Abstract. Dirac's prescription for quantisation does not lead to a unique phase operator 
for the electromagnetic field. In this paper we consider the commonly employed phase 
operators due to Susskind and Glogower and their extension to unitary exponential phase 
opertors. However, we find that phase measuring experiments respond to a different 
operator. We discuss the form of the measured phase operator and its properties. 

1. Introduction 

Dirac (1927) (see also Heitler 1954) postulated the existence of Hermitian, canonical 
number and phase variables in his description of the quantised electromagnetic field. 
Comparison with classical equations of motion led Dirac to assume that the number 
and phase operators obey the canonical commutation relation 

[$D, 61 = -i (1.1) 

where the hat denotes an operator and the subscript D denotes the Dirac phase operator. 
This commutation relation leads to difficulties when one attempts to calculate the 
matrix elements of 6D in the representation in which A is diagonal (the photon number 
states) (Louisell 1963). The matrix elements between the states (n'l and In) are 
undefined: 

( H  - n l ) ( n r i 6 D l n ) =  -is,,,. (1.2) 
Dirac was aware that there were problems associated with his descripton of phase. 
However, he pointed out that the difficulties do not arise if the phase operator only 
appears together with the number operator in a polar decomposition of the field 
creation and annhilation operators (see, for example, Schweber 1984). Louisell (1963) 
suggested that the problem embodied in equation (1.2) could be overcome by consider- 
ing periodic functions of the Dirac phase operator. (Judge and Lewis (1963) (see also 
Judge 1963) adopted a similar approach to the problem of angular momentum and 
rotation angle.) In particular, Louisell introduced the periodic operator functions 
cos &, and sin 4, which satisfy the commutation relations 

(1.3a) 

(1.3 b) 
Susskind and Glogower (1964) considered a description of oscillator phase using 
exponential phase operators in a polar decomposition of the creation and annihilation 

[COS i D ,  $1 = i sin $D 

[sin 4 D ,  N I  = -i COS 4,. * A  
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operators 
a* = & 4 f i l / 2  ( 1 . 4 ~ )  

a^'= ] i r l / 2 i - i 4  S '  (1.46) 

The exponential phase operators of Susskind and Glogower (1964) (which we denote 
by subscript S)  are the normalised raising and lowering operators: 

( 1 . 5 ~ )  

(1.5b) 

These operators do not comute and are not unitary. Therefore, the Susskind-Glogower 
formalism does not allow the existence of a unique Hermitian phase operator (Susskind 
and Glogower 1964, Carruthers and Nieto 1968, Loudon 1973 ( p  140), LCvy-Leblond 
1976). The operators of equations (1.5) cannot be considered as functions of a common 
phase operator. It is more natural to consider the Susskind-Glogower exponential 
phase operators e*;'* themselves as the fundamental phase-dependent operators. 

The phase operators of Susskind and Glogower have been used in discussions of 
the properties of coherent states (Carruthers and Nieto 1965, 19681, squeezed states 
(Sanders et a1 1986) and optical amplification processes (Matthys and Jaynes 1980, 
Loudon and Shepherd 1984). Number-phase uncertainty relations for the Susskind- 
Glogower operators and number-phase minimum uncertainty states have been con- 
sidered by Carruthers and Nieto (1965, 1968), Jackiw (1968), LCvy-Leblond (1976) 
and Sanders et a1 (1986). Phase operators have also been used in the analysis of phase 
measurement experiments (Gerhardt et a1 1973, 1974, Paul 1974, Nieto 1977, Shapiro 
and Wagner 1984, Walker and Carroll 1984). 

In this paper we reconsider the definition of a phase operator for the quantised 
electromagnetic field. We find that there are many suitable candidates. In particular 
we discuss two new candidate phase operators: a unitary exponential phase operator, 
$:, and a cosine phase operator, cosM 4, corresponding to the phase-dependent 
property measured in homodyne (Yuen and Chan 1983 and references therein) and 
prepared atom (Pegg 1981) experiments. In each case we compare the new phase 
operators with the conventional Susskind-Glogower operators. 

In § 2 we review the general properties of phase operators. Using the requirement 
that phase operators reproduce classical results in the suitable limits, we find the 
general conditions that a phase operator must satisfy. We consider the Susskind- 
Glogower operators and our two new phase operators as special phase operators and 
compare their properties. 

In § 3 we consider phase measurement experiments and in 9: 4 we redefine the phase 
operator in terms of the quantities usually measured in experiments. We find that the 
phase operators measured in experiments are proportional to the quadrature phase 
operators well known from discussions of squeezing (Slusher et a1 1985). Finally, in 
§ 5 we compare the phase operators and discuss our results. 

2. Phase operators 

In this section we identify appropriate operators for the quantum mechanical descrip- 
tion of the phase of the radiation field by exploiting the well known correspondence 
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between a single mode of the radiation field and a simple harmonic oscillator (see, 
for example, Loudon 1973, p 120) and considering the Poisson bracket formulation 
of the classical oscillator problem. The classical action ( J )  and angle (4) variables 
for a simple harmonic oscillator are related to the position and momentum by the 
relations (see, for example, Goldstein 1980, Carruthers and Nieto 1968) 

q = ( 2 J / m ~ ) ' / ~  cos 4 (2 . la)  

(2.16) 

where m and w are the oscillator mass and frequency. The classical Hamiltonian is 

p = ( 2 ~ m w ) ' / ~  sin 4 

H =  (p2/2m)+(mwzq2/2) 

= OJ. (2.2) 

In order to avoid the problem of multivaluedness of the phase angle it is natural to 
work with periodic functions of the phase 4. The time dependences of the phase 
variables sin 4 and cos 4 are given in terms of the Poisson brackets 

(2.3a) 

(2.3 b) 

Quantum mechanical operators whch reproduce the classical behaviour in the 
appropriate limit will be obtained if our operator commutators are related to the 
classical Poisson brackets according to the prescription (Dirac 1958) 

(d/dt)  cos 4 ={cos 4, H} = w sin 4 
(d ld t )  sin 4 ={sin 4, H} = -w cos 4. 

[I?, u^]-ifi{u, U}. (2.4) 
The application of this technique to the problem of phase is due to Lemer (1968). 
Thus we look for Hermitian cosine and sine operators c?s C$ and % C$ obeying the 
commutation relations 

(2.5a) 

(2.5b) 

= ( A  + f) hw. We also introduce the exponential 

(2.6) 

[cZ 4, AI = i Gi 4 
[&i 4, AI = -i cTs 4 

where the Hamiltonian operator is 
phase operators 6'" by 

e**'* = cZs 4 i i Zn 4 

which from (2.5) will then obey the commutation relations 
[;*i4, = *p+. 

The presumed Hermitian character of the cosine and sine operators implies that 
e**'@ are the Hermitian conjugates of each other. In addition, our phase operators 
must reproduce the classically expected values for highly excited coherent ('classical') 
states: 

(2.8a) lim (a/ c?s +la) = cos e 
14- 

(2.8 b)  

where a = la1 eie. The Lerner criterion and classical correspondence are not sufficient, 
however, to define unique phase operators (Lerner 1968). 
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2.1. Susskind - Glogower phase operators 

Dirac's (1927) original idea of radiation field phase was based upon a polar decomposi- 
tion of the creation and annihilation operators into the product of an Hermitian 
amplitude operator and a unitary phase operator. Susskind and Glogower (1964) 
attempted to construct operators that were as close as possible to Dirac's conception. 
The resulting exponential phase operators are the bare raising and lowering operators 
satisfying the conditions 

(2.9a) 

(2.9b) 

&'In) = In - 1)  

&"Jn) = In + 1) .  

In addition, the Susskind-Glogower formalism requires the extra condition that 

ty10) = 0 (2.10) 

to avoid negative number states. The non-unitary character of the phase operators 
results from the termination of the eigenstates of fi at the vacuum state IO). The 
Susskind-Glogower operators are 'one-sided unitary': 

(2.11a) 

(2.1 1 b)  

From these equations we can see that the non-commuting and non-unitary nature of 
C:'" is only apparent for states of the radiation field that have a significant overlap 
with the vacuum 

(GI[&', e*,"llG) = (GIO)(Ol+). (2.12) 

The Susskind-Glogower phase operators obey the Lerner criterion 

[ e* ; '* ,  &] = *e*;'* (2.13) 

and have the required behaviour in the classical limit (equations (2.8)) (Carruthers 
and Nieto 1965, 1968). Extensive discussions of the Susskind-Glogower phase 
operators have been given by Carruthers and Nieto (1968) and LCvy-Leblond (1976). 

In the quantum limit there are problems associated with interpreting the phase as 
described by the Susskind-Glogower operators. In particular we have 

(G, qq2+(ZS $J)2# 1 .  (2.14) 

Also, the vacuum expectation values of (155, + ) 2  and (sin, + ) 2  are $, not the f which 
we would associate with a state of random phase. This implies that if it were possible 
to measure the Susskind-Glogower phase, a measurement of (=ss q ! ~ ) ~  would squeeze 
the vacuum. It should be noted that these considerations do not mean that the 
Susskind-Glogower formalism is inconsistent. However, it does mean that the phase 
operator expectation values are difficult to interpret and we require complicated 
uncertainty relations (Carruthers and Nieto 1965, 1968, Jackiw 1968, LCvy-Leblond 
1976). 

h 

2.2. Unitary phase operators 

In this subsection we introduce unitary commuting exponential phase operators (which 
we denote by a subscript U )  iti*. Our aim is to realise Dirac's idea of a polar 
decomposition of the creation and annihilation operators into Hermitian and unitary 
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parts. We achieve our objective by extending the normal harmonic oscillator Hilbert 
space to include negative number states. We note that the derivation of the harmonic 
oscillator eigenstates merely requires a ground state that is annihilated by the annihila- 
tion operator so that the energy spectrum is bounded from below (see, for example, 
Merzbacher 1970). Negative energy states are not precluded, but they must be 
decoupled from the positive energy ground state that is annihilated by the annihilation 
operator. We shall see that the states containing a negative number of photons are 
inaccessible to a physical system so their mere existence in the formalism does not 
predict any new phenomena in quantum electrodynamics. 

We define the unitary exponential phase operators as the normalised raising and 
lowering operators extending over the complete Hilbert space of all positive and 
negative photon number states: 

5 

fy= 1 In)(n+l/  
n = - o c  

CO 

( 2 . 1 5 ~ )  

(2.15 b) 

With this extended basis of orthonormal oscillator states, the resolution for the identity 
becomes 

(2.16) 

The unitarity of e*:'' results from the absence of a cutoff in the summations defining 
the operators. 

We retain the property that the number states are eigenstates of the number operator 
fi with eigenvalues n 

Gin)= nln) (2.17) 

for all positive and negative n. The polar decomposition of the creation and annihilation 
operators into an Hermitian amplitude and unitary phase then requires that 

â  = e*;Ltlfil/zl ( 2 . 1 8 ~ )  

st = 1&1/21g;i+ (2.18b) 

where [fil"\ is the Hermitian amplitude operator 

(2.19) 

The expectation value of the commutator of â  and â ' depends upon whether the 
system is in a positive or negative photon number state: 

m 

[ ( i ,a^ ' ]= ( n ) ( n ( -  f In)(nl.  
n =O n=--ID 

(2.20) 

For the creation and annihilation operators to correspond to the negative and positive 
frequency components of the free field, we require the free-field Hamiltonian to be 

fi = ( f i + + ) h w  (2.21) 

with both positive and negative energy eigenvalues. 
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The destruction of the vacuum state 10) by the annihilation operator and the 
destruction of the state 1-1) by the creation operator are due to the Hermitian amplitude 
parts of the operators (2.18). Physical couplings to the radiation field take place via 
the creation and annihilation operators, the fundamental coupling being of the form 

f i I  = ( c  numbers)(a^+ a^+)(current operators). (2.22) 

It follows that the negative energy states cannot be coupled to any physical, i.e. positive 
energy, states because the Hamiltonian matrix elements between positive and negative 
energy states are always zero: 

( n l f i , I n t ) = 0  (2.23) 

if In) is a negative energy state and In') is a positive energy state. Therefore, a field 
initially in a superposition of positive energy eigenstates can never evolve into a state 
containing a negative energy eigenstate. This lack of coupling between the positive 
and negative energy states means that quantum electrodynamical systems are restricted 
to the positive energy subspace where the familiar relations 

[a^, a^+]  = 1 (2.24) 

c I n ) ( n l = 1  (2.25) 
m 

n = O  

are true. 

basis number and Hamiltonian operators 
The unitary phase operators obey the Lerner criterion if we employ the extended 

[e*:'", fi] *p. (2.26) 

The similarity between the unitary and the Susskind-Glogower phase operators ensures 
that the unitary phase operators have the required behaviour in the classical (positive 
energy) limit. 

As with the Susskind-Glogower operators, there are problems associated with the 
unitary phase operators. In the unitary formalism the cosine and sine phase operators 
obey the trigonometric identity 

( G S ,  $)2+(Giu $ ) 2 =  1 (2.27) 

and the vacuum state expectation values of ( C ~ S , ,  $ ) 2  and (& c $ ) ~  are i. However, 
these properties rely on the existence of unphysical negative photon number states. 
The unitary phase operators are unmeasurable because the fundamental interaction 
Hamiltonian (equation (2.22)) does not couple positive and negative number states 
together. Therefore no measuring device can be constructed that is sensitive to the 
negative number states in the definition of the unitary phase operators. 

In addition, the Susskind-Glogower phase operators do not correspond to the 
quantities measured in homodyne (Yuen and Shapiro 1980) and prepared atom (Pegg 
1981) experiments. We now turn our attention to defining different phase operators 
that correspond to these usual phase measuring experiments. 

2.3. Measured phase operators 

In the previous subsection we noted that the fundamental radiation-matter coupling 
in quantum electrodynamics is via the field creation and annihilation operators. 
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Therefore it seems natural to consider the creation and annihilation operators as 
fundamental and to construct phase operators in terms of 6 and 6'. We noted previously 
that the Lerner criterion does not define a unique phase operator; indeed the creation 
and annihilation operators themselves obey the Lerner criterion 

In fact we can construct any operators of the general form 

( 2 . 2 8 ~ )  

(2.286) 

( 2 . 2 9 ~ )  

(2.29b) 

where f and g are well behaved functions, which also satisfy the Lerner criterion. The 
Susskind-Glogower expressions (equations (1.4)) are just one particular member of 
this larger set. 

The choice of phase operators is further constrained by the condition that they 
must reproduce the classically expected values for highly excited coherent states. 
Therefore the creation and annihilation operators themselves are not suitable as phase 
operators, although suitable phase operators of the form presented in equations (2.29) 
can be constructed. In particular Lerner (1968) has advocated the use of the symmerical 
expressions, either 

or 

( 2 . 3 0 ~ )  

(2.30b) 

( 2 . 3 1 ~ )  

(2.316) 

In this subsection we construct phase operators that correspond to the usual 
operational definition of a phase measurement. In 0 3 we shall see that the quantity 
suggested by homodyne (Yuen and Shapiro 1980) and prepared atom (Pegg 1981) 
experiments is 

c o s M 4 - k ( 6 + 6 - )  (2.32) 
where k is a state-dependent c number (obtained by means of an independent experi- 
ment). We use the subscript M to denote these measured phase operators. The number 
k must be chosen so that 

I+-x lim (cyIk(u*+a^A))cy)=cos 8 (2.33) 

h 

where cy = Icy1 ele. We also define zM 4 to be 
h 

sinM 4 = -ik(; - 6'). (2.34) 
We give an analysis of the phase measurements that lead us to define our measured 
phase operators in 0 3. 

Our choice, for reasons discussed later, is to define 

A a * + $ +  
COSM 4 = ( 2 . 3 5 ~ )  2( A + +)l'2 

(2.35b) 
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where ii is the mean photon number of the measured field. This choice is arrived at 
by placing the energy or intensity in the denominator of the classical phase measurement 
experiments. Here, in contrast to the operators of Lerner (1968, equations (2.30)), the 
energy denominator takes the form of an independently derived c number rather than 
an operator. The phase operators exhibit the classically expected property that 

( ( C Z M  4 )* )+( (ZM d)2)= 1. (2.36) 

The major problem associated with these phase operators is that their spectra are not 
bounded by the interval ( -  1, 1). This may be demonstrated by considering the expecta- 
tion values of the operators (cosM 4)”. We address this problem in $4. However, as 
these operators correspond to the quantities measured in conventional phase measure- 
ments it seems natural to adopt them as phase operators. 

In table 1 we list some of the properties of the Susskind-Glogower, unitary and 
measured phase operators in order to highlight the differences between them. 

Table 1. Some of the properties of the phase operators discussed in this paper. 

Susskind-Glogower Unitary Measured 

3. Phase measurements 

Classically an absolute phase has no meaning and all measurements must be made 
relative to the phase of the reference system. The same can be expected for quantum 
mechnical systems, with the observable quantity being the phase difference between 
the quantum system and a reference oscillator. If the reference oscillator is in a highly 
excited coherent state then it has a well defined phase (equations (2.8)). In what 
follows we choose this reference phase to be precisley zero. 

An observable is measured by means of an effect on the measuring apparatus. 
Electrodynamic fields interact with matter by means of an interaction Hamiltonian 
which, in the quantum mechanical case, will involve the creation and annihilation 
operators a*+ and 6. It is the properties of these operators which will predict the 
outcome of such measurements. We discuss briefly two physical processes where it is 
known that the phase of a classical field has a measurable effect on the measuring 
apparatus. We postulate that the corresponding effect produced by a quantum field 
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will also be a phase effect, from which an operational means of defining the phase 
can be determined. A boundary condition which must be satisfied is that, when the 
measured field is also in a coherent state, with mean photon number ti, the result of 
a phase measurement must tend to the classically expected value as A increases. 

The first measurement process involves homodyne detection (see, for example, 
Yuen and Shapiro 1980, Yuen and Chan 1983), i.e. mixing two fields of the same 
frequency and measuring the total intensity. Here the reference field will be a coherent 
field, whose intensity we shall allow to tend to infinity, and whose phase is defined to 
be zero. Classically this corresponds to a reference field which in the dipole approxima- 
tion at the detector is E R  cos ut. If this is mixed with a classical field EM cos(wt + 6) 
with a fluctuating phase 4, it is not difficult to show that for I,>> I,, where IR and 
IM are the cycle-averaged intensities of the reference and measured fields 

Here I is the total cycle-averaged intensity measured by the detector. Clearly the 
measurement needs to be made in a short time compared with the characteristic time 
of the fluctuations. 

In the quantum mechanical case, where intensities are again measured, for example 
by photoelectron counts, a measurement of cos 4 could be defined in terms of quantities 
associated with those on the right-hand side of (3.1). By using suitable beam splitting 
and path differences a single measurement of I - IR could be made (Yuen and Shapiro 
1980, Yuen and Chan 1983). Alternatively, because I ,  is assumed to be without 
fluctuations, and thus the same at all times, a separate measurement of IR could be 
made. It would be difficult in practice to measure (IM)1’2 at precisely the same time 
and place as the measurement of I-ZR is performed. Also, in usual experiments a 
measurement of ( IM)1’2 is not performed, either immediately before the measurement 
of I - IR or afterwards. Consequently, finding the operator counterpart of (3.1) involves 
replacing only the numerator with an operator Z - f R ;  the denominator will be a c 
number chosen to give correct dimensions and the correct limiting behaviour. The 
resulting operator will act on both the reference and measured field:. in order to 
obtain an operator which acts only on the measured field we use ( / 3 ~ I - Z R ~ ~ )  in the 
numerator, where lp) is the state of the strong coherent reference field. This latter 
field is chosen to have phase zero and the eigenvalue p of its annihilation operator 6 
is real. Writing f in terms of the combined field operators 6+a* and its Hermitian 
conjugate, fR in terms of the reference field operators 6 and 6’ and letting /3 +CO, we 
find the phase operator corresponding to the operation of homodyne measurement to 
be simply 

h 

COSM d =  k(a*+a*’). (3.2) 

This operator is a normalised quadrature phase operator. The reduced fluctuations in 
one of the quadrature phases associated with squeezed states (Walls 1983 and references 
therein) imply reduced noise in the measured phase operators. We have used the fact 
that the c number representing the denominator in (3.1) must be proportional to p as 
p +.CO in order to obtain a finite expression, as one would with a classical reference 
field. Thus k is a c number which depends only on the measured field and has the 
dimensions of the inverse square root of a photon number. Also, if the measured field 
is in a coherent state, with mean photon number f i , k must approach +( f i ) - ” 2  for large 
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f i  in order to obtain the correct classical limit. Without loss of generality we can write 

k + F)-"* (3.3) 
where F is to be determined or defined subject to the condition that F << ri for large 2. 

The second method for the measurement of a phase associated property involves 
the interaction of the field with a two-level atom in a particular superposition state. 
It is well known that the occurrence of absorption or stimulated emission depends on 
the relative phases of the field and the prepared atomic state. It should be possible, 
therefore, to find a measure of the phase of the field by examining the initial change 
of the atomic state at the instant of interaction with the field. The atomic state could 
be prepared by a 7r/2 pulse from a reference field at an earlier time, in a similar 
manner to that described by Pegg (1981). To be specific, consider a two-level atom 
with excited and ground states le) and /g) with transition frequency w resonant with 
both the reference and measured field frequencies. The prior action of the intense 
reference field is equivalent to that of a classical field (with zero phase) so the 
Hamiltonian is 

H=w/e)(eI+AE,(t)  cos wt(le)(gl+lg)(el) (3.4j 

where A is the coupling constant. It is convenient to work in an interaction picture. 
We use the unitary operator 

T = exp(ile)(elwt) (3.5) 
to transform to a reference frame in which the field ER( t )  cos w t  becomes an effective 
field iE , (  t )  when the rotating-wave approximation is made (see, for example, Knight 
and Allen 1983). In this frame the Hamiltonian is time independent: 

H =iAE,(t)(le)(gl+ M). (3.6) 
The action of a 7r/2 pulse is to put an initially ground-state atom into a coherent 
superposition state which, in this frame, is 

/A)  =2-1'2(lg)-ile)). (3.7) 
A more detailed discussion of the action of classical pulses on two-level atoms is given 
by Allen and Eberly (1975). The prepared atom retains the well defined phase 
information of the reference field in its dipole moment. 

If a general fluctuating classical field E M (  t )  cos(wt - I$( t ) )  is applied to the prepared 
atom at time t ,  the value of (u2) will change, where a, = le)(el- Ig)(gl, in a manner 
dependent on the phase of the field. In the interaction picture in the rotating-wave 
approximation the Hamiltonian is 

(3.8) 
Under the action of this second field the initial rate of change of (az)  for the atom in 
the prepared atomic state is easily found from i(AI[H, a 2 ] ( f l ) i A )  to be proportional to 
cos q 5 ( t l ) ,  i.e. 

H (  t )  = iAE,( f)(e"("~e)(g~+ e-""'~g)(e~). 

(e,(t i))=SAE~(ti)  COS + ( t i ) .  (3.9) 
In the quantum mechanical case the prepared atom is exposed at time t ,  to a 

quantised electric field. As in the semiclassical treatment above we expect the value 
of (a,) to change in a manner dependent on the phase of the field. In the interaction 
picture, and making the rotating-wave approximation, the Hamiltonian is 

(3.10) H = i N d k ) ( g /  + a*'(g)(el) 
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where A is the fully quantum mechanical coupling constant. Under the action of the 
quantised field the initial rate of change of (uz) in the prepared atomic state is found 
from i(f\(Al[ H, u,]lA)lf), where I f )  is the field state at t l ,  to be 

(3.11) 

which is proportional to (GM 4). For a field in a strong coherent state with complex 
amplitude a =la( eie it is clear that (bz( t l ) )  is proportional to cos 0. For a general 
field, comparison of (3.9) and (3.11) shows that, as with the homodyne measurement, 
the phase operator corresponding to the operation of prepared atom phase measurement 
is E G M  4. 

The corresponding sine phase operator, zM 4, can be measured by altering the 
phase of the reference oscillator. 

( b z  ( t i  )) = tA(fI â  + &'If) 

4. Choice of measured phase operators 

From the preceding work it is clear that a definition of c G M  4 as 

(4.1) 
A 

COSM 4=k(a^+a* ' )  
is at least in accord with measurable phase-dependent properties. Indeed, the original 
phase measurements of Gerhardt et al (1973, 1974) involved a homdyne technique. 
In this, the experiments appear to be measurements of the observable associated with 
cosM d rather than measurements of the Susskind-Glogower (1964) phase GS 4 that 
they had intended to measure (Gerhardt et a1 1974, Nieto 1977, LCvy-Leblond 1977). 
In classical homodyne experiments the maximum attainable value for the measured 
phase is cos 4 = 1. However, in a quantum homodyne experiment the spectrum of 
~ 5 % ~  4 is unbounded. This may be demonstrated by considering the expectation value 
of ( S s M  4)'". If the spectrum of (GM 4)'" is bounded then the spectrum of 
( S s M  4)'"' will also be bounded and its expectation value will be finite for all m. This 
proves not to be the case. We calculate expectation values of the operator (GM 4)'" 
by using the generating function d ( x )  

(4.2) 

We can write the generating function in a normally ordered form by using the 
Baker-Campbell-Hausdorf theorem (Louise11 1973, Hong and Mandel 1985) 

A 

6 ( x ,  = exp(x G S M  4). 

6 ( x )  = exp(x 'k2/2) :6(x) :  (4.3) 
where the colons denote normal ordering. Expanding both sides of (4.3) as a series 
and equating coefficients of x 2 " / ( 2 m ) !  we find a series for (cGM 4)'"' in terms of 
normally ordered operators 

( c G M  4)'" = : ( G M  4)'"': +tk22m(2m - 1)/1 !:(GM 41zm-': 
+(fkz)'2m(2m -1)(2m-2)(2m -3) /2! : (ZsM 4)2"'-4:+. . . 
+(tk2)"(2m)!/m!.  (4.4) 

This series involves terms containing normally ordered even powers of sM 4 with 
positive coefficients and a constant term (k2/2)"(2m)!/m! which diverges as m 
increases. By choosing m large enough, we can make ((E%, 4)'") greater than any 
number we choose. This implies that the spectrum of (GM 4)2m, and therefore the 



3860 S M Barnett and D T Pegg 

spectrum of cG, 4, is unbounded. In a classical homodyne experiment, the largest 
realisation of the intensity of the combined reference and signal fields can be chosen 
to correspond approximately to cos 4 = 1 .  In this way the apparatus may be calibrated. 
However, the spectrum of cG, 4 is unbounded and no such technique can be applied 
to calibrate a quantum phase measurement. There is no well defined method for using 
the largest realisation of the measured intensity to determine k 

It then remains to choose a suitable value for k in the definition of C ~ S ,  4. From 
the above discussion we cannot choose a value of k other than zero such that all 
experimentally measured values of cG, 4 are less than one. However, guided by the 
relationship between k and $( in the classical expression for cos 4 (equation 
(3 .1 ) )  and remembering that c numbers can be obtained in quantum mechanics from 
expectation values, a reasonable choice for k is :( f i  This can be compared 
with the operator expressions of Susskind and Glogower (1964) where, for example 
the operator ( fi + 1)-1’2 is on the left of a* or fiiT-”2 is on the right of a* in 

(4.5) 

and the symmetrical expressions of Lerner (equations (2.30) and (2.31)). In the 
definition of‘ c%, 4, because f i  commutes with 6, the corresponding expressions have 
( 3  + + ) - ‘ I 2  on the right or left of a*. Our operator definition is thus 

GS, 4 = (a*+a*t)/2(n+$)1’2. (4.6) 

By altering the phase of the reference field by ~ r / 2  another measurement can be 
performed which, in the classical limit, behaves as sin 4. Following the same procedure 
as above gives the corresponding definition of z, 4 as 

zi+ = (fi+ 1 ) - 1 / 2 6  = ; f i - 1 / 2  
S 

h 

sin, 4 = (a* - a*+)/2i(ii ++)’/’. (4.7) 

It is apparent that the phase measurements of Gerhardt et a1 (1973, 1974) and, for 
example, Walker and Carroll (1984) correspond more closely to cG, 4 and %, 4 
than to c G s  4 and zs 4. In the experiments of Gerhardt et a1 the phase measurements 
were normalised by using the largest occurring intensity. Thus the normalisation 
constant k will only be approximately the same as that above. 

5. Discussion 

In this paper we have investigated appropriate operators for the quantum mechanical 
description of the phase of the radiation field. In particular we have considered the 
Susskind-Glogower, unitary and measured phase operators. All the phase operators 
exhibit non-classical behaviour for quantum states but reproduce classical phase 
properties in the appropriate limit. 

The original motivation for the introduction of phase operators was to describe 
the electric field in terms of polar (amplitude and phase) variables. Dirac (1927) 
suggested that the single mode creation and annihilation operators could be factorised 
into Hermitian amplitude and unitary exponential phase operators. Susskind and 
Glogower ( 1964) demonstrated that the exponential phase operators obtained from 
such a factorisation are only one-sided unitary. Of the number of different possible 
exponential phase operators which satisfy the Lerner criterion, and which involve only 
positive energy states, the Susskind-Glogower operator is that which is closest to being 
unitary. A nearly unitary operator is, nevertheless, still non-unitary. If the region of 



Phase in quantum optics 3861 

interest is that in which the non-unitarity is most apparent, this near unitarity is not 
a great advantage. In particular, fields with very small mean photon numbers, where 
non-classical effects might be expected to be observable, represent such a region. If 
a unitary operator is required, we see no alternative to using the complete Hilbert 
space which includes the negative energy states, but this requires an infinite set of 
unmeasurable states which are inaccessible for any physical system. On the other 
hand, if unitarity is not a necessary requirement, we prefer to abandon it entirely and 
to define phase operators in terms of the quantities actually measured in usual phase 
measuring experiments. This leads us to consider the single mode creation and 
annihilation operators (6' and 6) as the fundamental field operators and to define 
measured quantities in terms of them. The analysis presented in Q 3 of this paper 
demonstrated that usual phase measuring experiments correspond to measurements 
of operators proportional to 6 + it. Therefore we define our measured cosine phase 
operator to be proportional to a*+&'.  We note that in squeezing experiments it is in 
fact the fluctuations in the measured cosine and sine phase operators which can be 
said to be squeezed (Walls 1983 and references therein). Indeed, we can equally well 
discuss squeezed states in terms of the measured phase operators or the usual quadrature 
phases which are identical apart from a normalisation factor. 

In conclusion we suggest the adoption of ~ 5 % ~  $I and zM $I as an operational 
definition of phase measurement. 
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